
www.manaraa.com

 28 TechTrends Volume 50, Number 5

oftware engineering is popularly
misconceived as being an up-
market term for programming.

In a way, this is akin to characterizing
instructional design as the process
of creating PowerPoint slides. In
both these areas, the construction of
systems, whether they are learning
or computer systems, is only one
part of a systematic process. The
most important parts of this process,
analysis and design, precede the
actual construction. In studies of
software failure, the failure is more
often traced to poorly stated or
missing requirements than it is non-
functional code (Standish Group
International, 1999). Even when
programs are functional, the interface
design may prevent easy access to that
functionality by end-users.

There is scope for instructional
designers to use some of the body of
research and experience in software
engineering, especially as technology
increasingly infuses learning systems.
Goodyear (1995) and Bostock (1998)
both refer to “courseware engineering,”
which represents the intersection of
the fields of instructional design and
software engineering. Other attempts
to draw parallels between the two
areas include Wilson, Jonassen and
Cole (1993), who note how software
engineering has largely moved away
from the linear process model, still
prevalent in instructional design,
toward more iterative approaches
utilizing prototyping. Also, an
emerging concept in instructional

design borrowed from the software
engineering world is that of the
learning object. In this article, I
will introduce several software-
engineering process issues of relevance
to the development of methodological
thinking in instructional design.

Categorizing approaches
to methodology

Many academic thinkers, when
considering methodology, develop
prescriptions for a methodological
process. Few of these academic models
are adopted on a wide scale; instead,
customized processes emerge within
different organizations. Given the
vast varieties of practice, rather than
trying to define the ultimate standard
methodology, another approach is
to standardize the categorization of
methodologies.

The Software Engineering Insti-
tute at Carnegie Mellon University de-
veloped the capability maturity model
(CMM) to facilitate such an approach.
The CMM is a system for measuring
the quality of the processes used with-
in a software development organiza-
tion. The CMM provides a means for
the qualitative evaluation of processes
without the need to follow a specific
methodology.

The CMM (Paulk, Weber, Curtis,
& Chrissis, 1995) includes five levels of
maturity: initial, repeatable, defined,
managed and optimized. In the initial
level, everything is done in an ad hoc
manner with no formal organization

Issues in Software Engineering
of Relevance to
Instructional Design
By Ian Douglas

S“Many academic
thinkers, when

considering
methodology,

develop prescriptions
for a methodological
process. Few of these
academic models are

adopted on a wide
scale. Rather than

trying to define the
ultimate standard

methodology,
another approach is

to standardize the
categorization of

methodologies.”

www.manaraa.com

 Volume 50, Number 5 TechTrends 29

or process management. The process
is unpredictable and dependent on
individuals. It is not possible to give
definite answers on the time and cost
involved in a product development.

At the repeatable level, polices
and procedures are established to en-
sure successful practices are repeated.
Discipline is brought to development
projects through a project manage-
ment system. Project and product
standards are defined and the organi-
zation ensures they are followed.

At the defined level, an organi-
zation will have a documented and
well-defined standard process, which
integrates project management and
development methods. The process
will be well defined in that it has in-
puts, outputs, standards (e.g., for doc-
umentation or modeling), completion
criteria and verification mechanisms
(e.g., peer review). A unit within the
organization is assigned responsibility
for the process and organization-wide
process training is made available.

At the managed level, the
organization has quantitative quality
goals for both products and processes.
An organizational database is use
to collect and analyze the data from
projects. This gives a measure of
predictability to the process as metrics
on a current project can be compared
with those on past projects. An
organization can look for trends and
identify when new approaches (e.g.,
the use of a new development tool)
lead to better results.

At the optimized level the entire
organization has a clearly defined goal
of continual process improvement
and established numerical measures,
and control techniques are used to
guide the organization toward higher
process quality and productivity.
The organization actively works
to identify new innovations that
improve performance and transfers
proven improvements throughout the
organization.

The CMM model has gained wide-
spread acceptance and many software
development contracts, particularly
in the government, specify that bid-
ders must have reached at least level
3 on the CMM. An organization that
is aware of the CMM levels recognizes

the value of the higher levels, is objec-
tive about its own level and the need
for improvement and has a good start
on process improvement.

Is there room for a CMM tailored
for the instructional design processes?
Although the CMM specifically ad-
dresses software engineering process-
es, much of it can apply to any prod-
uct development process. It would be
interesting to speculate how many or-
ganizations involved in producing in-
struction would score the equivalent
of a Level 5.

Heavy or agile?
Over the past several years, there

has been a growing revolution among
many software engineering practitio-
ners against the traditional approaches
to methodology, which are prominent
in most textbooks (e.g., Pressman,
2000). Traditional models derive from
what is called the waterfall approach,
which is similar in structure to the
ADDIE model that instructional de-
signers are familiar with. Variations of
this model have been developed and
augmented since the early seventies.
Some traditional models are now so
complex and prescriptive that many
software companies have large manu-
als describing their methodology in
detail and even go to the extent of re-
quiring forms to be filled out if anyone
wishes to deviate from the prescribed
method.

The criticisms expressed in the
software world against traditional
models are similar to those in the
“Attack on ISD” article published in
Training magazine (Gordon & Zemke,
2000). The main criticisms in this arti-
cle — that ISD as a process is too slow
and clumsy, assumes superiority with-
out empirical evidence, can still pro-
duce bad solutions and clings to the
wrong world view — would resonate
with critics of traditional software de-
sign approaches. The difference is that
the critics of traditional software engi-
neering methodologies have proposed
some well-developed alternatives.

The alternatives have been referred
to as light, new or agile methodologies
and have generally been developed by
practitioners rather than academics.

“The main criticisms
[of ISD] would
resonate with
critics of traditional
software design
approaches. The
difference is that the
critics of traditional
software engineering
methodologies have
proposed some
well-developed
alternatives.”

www.manaraa.com

 30 TechTrends Volume 50, Number 5

The leading proponents of the agile
approach have collaborated to state
their combined vision for an alternative
approach to software development in
the Agile Manifesto (Agile Alliance,
2001). Fowler (2000) states that the
main difference between agile and
traditional methods is that agile
methods are adaptive and people-
oriented rather than predictive and
process-oriented.

The Agile approach has some roots
in the open source movement (Open
Source Initiative, 2005), an earlier
and still growing movement against
traditional practices. One of the open
source movement’s criticisms of the
traditional approach is that it results in
software products where the code and
the much of the design knowledge are
hidden from the user. They advocate
that code be open for inspection and
modification by anyone who would
wish to use or improve upon the
design. This community-oriented
approach has also been a theme in
many of the new agile methodologies.

One of the best-known examples of
an agile methodology is called extreme
programming (Beck, 2000). Rather
than focus on the process phases and
their products, extreme programming
begins with four values for the people
involved: communication, feedback,
simplicity and courage. It further
specifies a set of guidelines for the
production of software products:

•	 Work on short three-week cycles
based around “stories.” Stories
describe a discrete functional unit
of the product.

•	 Have small, frequent releases and
testing of product components.

•	 Refactor (review the design
structure) mercilessly.

•	 Design the test before the code.
•	 Conduct programming in pairs.

Pair programming is seen to
provide real time quality control
and learning.

•	 Encourage collective ownership.
This is a refinement of an earlier
concept of ego-less programming,
where there is collective respon-
sibility for the system quality ir-
respective of individual work as-
signments.

•	 Continuously integrate the differ-
ent components of the system.

•	 Maintain a 40-hour workweek to
avoid burnout of creative talent.

•	 Have an on-site customer to pro-
vide continuous validation of re-
quirements and functional units.

Extreme programming has gained
popularity with a number of developer
groups since it is based on the way they
like to work and quickly generates
demonstrable software products. It
is also relatively easy to understand.
A complaint against traditional
methodologies is that a great deal of
time is taken up with process artifacts
(documentation) and that these must
be completed and accepted before
development can begin.

Extreme programming is just one
example of several methodologies that
come under the agile banner, and each
of them borrows ideas from each other.
A full review of the agile methods
can be found in Abrahamsson, Salo,
Ronkainen and Warsta (2002). Many
of the guidelines of agile methods
could be easily incorporated into an
agile method for instructional design.

Critics of agile methodologies
have claimed that they are too focused
on the experience of small teams of
highly qualified software engineers
on relatively small projects. It is
thought that they may be difficult to
apply in large projects with fixed
costs, deadlines and multidisciplinary
teams. Traditional methodologies also
tend to fit with traditional approaches
to project management, and thus
agile processes may not appeal to
management in large organizations.

How do you design
with objects?

The component approach to
product development has evolved
in physical products for centuries,
gaining particular impetus with the
industrial revolution. Prior to this, a
craft-based approach was prevalent,
where one or two individuals would
create a complete product from the
raw materials available to them. In
software development, the transition

“The main difference
between agile

and traditional
methods is that

agile methods are
adaptive and people-

oriented rather
than predictive and

process-oriented.”

www.manaraa.com

 Volume 50, Number 5 TechTrends 31

from a craft-based development has
not been immediate.

The component approach has a
number of benefits. The main benefit
is in allowing reuse (i.e., a component
design used on one product can be
used to provide the same function for
another product). This is possible if
there is a standard way of connecting
the components.

Additional benefits of components
include ease of maintenance (i.e.,
if a problem arises in a product,
it is possible to identify the faulty
component and replace it). In addition,
speed of new product development
can be increased since products are
assembled from different combinations
of existing components. Incremental
improvement is also possible as new
and improved components become
available.

This paradigm shift in computer
software development is changing
how people think about software
design. Designers can first look for
components that already exist for the
functionality they wish to achieve
rather than having to craft a whole
application through their own efforts.
The web has facilitated this through
the creation of a number of sites where
components can be obtained.

The idea of moving to a
component model for instructional
design has arisen relatively recently
and been driven by the interest in
the educational potential of the web.
There are now a number of initiatives
that seek to transfer the ideas and
benefits of the component approach
to the development and delivery
of learning systems. The initiatives
include efforts to establish technical
standards required for learning
components. These have strong
support from the vendors of learning
management systems and major users
of learning technology such as the U.S.
Department of Defense (Advanced
Distributed Learning, 2005).

The concept of “software
components” (also referred to as
“web services”) has emerged over
the last decade, built upon the older
concepts of object-oriented software
engineering. In software engineering,
a component is a self-contained

mini-program that provides a
distinct functionality. Component-
based applications are assembled by
connecting the components together
(across the internet in the case of web
services). This seems to be similar
to most current conceptions for
“learning objects.” The concept of
object-oriented programming, which
shares the main aim of promoting
reuse, is a little more complex than
that of software components.

There is great interest in how ob-
ject/component-based systems are
organized into effective architectures
(Yourdon & Constantine, 1979). Ef-
fective architectures ease maintenance
(one of the biggest costs in software)
and facilitate systems being extended
to cope with changing requirements.
Two key concepts that are often
stressed are cohesion and coupling.
Software system architects will strive
to achieve high cohesion and low cou-
pling in their systems.

A system is said to be highly
cohesive if its components have a well-
defined function to perform within a
system; if a component has a number
of different functions to perform, its
lacks cohesion. If this concept were
adopted in relation to learning objects,
it could translate to each object being
tied to no more than one learning
objective. It might also translate to
the separation of instruction and
assessment into different objects. The
idea here is that if an object has more
than one distinct function, it is harder
to maintain, replace or reuse.

A system is said to be highly
coupled if its components are
interlinked and dependent upon one
another. In a highly coupled system
it is difficult to reuse an individual
component independent of the other
objects to which it is coupled. The
acceptance of a package of coupled
components is often required, even
when the function of only one
component is needed in a new system.
In relation to learning objects, this
means it might be difficult to equate
a section or chapter of a book directly
with a learning object, since sections
are often written on the assumption
that the reader has access to the whole
book. Sections and chapters of the

“The concept of
‘patterns’ has gained
prominence as an
alternative way
to achieve reuse
in the software
world and could
also be adapted to
facilitate reuse in
instructional design.
Patterns are focused
on the reuse of
design knowledge
rather than the reuse
of artifacts produced
in prior design
efforts.”

www.manaraa.com

 32 TechTrends Volume 50, Number 5

book will often cross-reference each
other and this makes it more difficult
to reuse specific material outside the
context of the book. The low coupling
approach has been adopted in the
ADL SCORM (Advanced Distributed
Learning, 2005) concept of objects,
where there is a specific requirement
to separate the navigation and
sequencing of content from the
content itself.

While it is seen as desirable to
design software systems as highly
cohesive and lowly coupled, achieving
this goal is often difficult (Nandigam,
Lakhotia, & Cech, 1999). It is more
difficult to achieve if designers are not
specifically taught and encouraged to
apply these concepts.

Among the other related concepts
that have arisen in component-based
systems is tiered architectures. This
approach essentially categorizes
components for different purposes
within a system, the main ones
being boundary (interface to users
and/or other systems), control (e.g.,
processing data) and data storage.
More thinking is required along
these lines for learning objects. How
should objects be categorized and
organized into functional systems?
The currently amorphous concept
of the learning object may have to
evolve into a taxonomy of learning-
related objects with at least a definite
separation between learning content
and its presentation.

Moving from objects
to patterns

Some have argued that in the
software world, reusable components
have had limited success compared
with the investment and hype they
have generated. It can be argued that
developers find it difficult to trust
code produced by others or perceive
acquiring and adapting existing
components to a new context to be
more time-consuming than building
from scratch. Advocates of the open
software movement, which requires
that all source code be made available,
would argue they have a solution to
the trust issue.

The concept of “patterns” has
gained prominence as an alternative
way to achieve reuse in the software
world and could also be adapted to
facilitate reuse in instructional design.
Patterns are focused on the reuse of
design knowledge rather than the
reuse of artifacts produced in prior
design efforts. The concept first came
to prominence in architecture, where
Christopher Alexander (1979) argued
that commonly occurring patterns
could be identified in successful town/
building/room designs. He began
describing, rating and cataloguing
these patterns. A pattern is a record
of how a particular recurring problem
has been solved successfully in
the past. It is general enough to be
adapted and reused in a way that
matches a particular situation. A
pattern attempts to provide the best
solution to a problem by recognizing
and recording principles that are
practiced by the best designers. One
of Alexander’s own patterns related to
the design of workspaces for optimal
learning is presented in Table 1. The
patterns would be illustrated by
photographs or diagrams that help
illuminate the solution explained in the
pattern. Alexander rates his patterns
according to their significance, with
some patterns being “more true, more
profound, more certain than others.”
Communities of software developers
have come together to propose and
evaluate patterns for software design
problems, and there is an annual
conference specifically devoted to
patterns.

There is scope for a similar ap-
proach occurring in instructional
design. Pedagogical patterns are col-
lections of common learning design
problem-solution pairings. One com-
munity of computer science educa-
tors has already begun to establish a
collection of pedagogical patterns for
computer education based on their
collective experience (Pedagogical
Patterns Project, 2005). The active
involvement of instructional design-
ers in such communities is likely to
have a beneficial effect, and indeed
a catalogue of abstract patterns (that
could apply across a range learning
domains) developed by the instruc-

Name: Master and Apprentices *

Problem: The fundamental learn-
ing situation is one in which a per-
son learns by helping someone who
really knows what he/she is doing.

Forces: learning from lectures
and books is dry as dust…The
schools and universities have
taken over and abstracted many
ways of learning which in earlier
times were always closely related
to the real work of professionals,
tradesmen, artisans, independent
scholars … An experiment by
Alexander and Goldberg has
shown that a class in which one
person teaches a small group
of others is most likely to be
successful in those cases where
the “students” are actually helping
the “teacher” to do something, to
solve some problem, which he is
working on anyway — not when
a subject of abstract or general
interest is being taught. (Report
to the Muscatine Committee, on
experimental course ED. 10X,
Department of Architecture,
University of California, 1966).

Solution: Arrange the work in
every workgroup, industry and
office, in such a way that work
and learning go forward hand in
hand. Treat every piece of work
as an opportunity for learning. To
this end, organize work around a
tradition of masters and appren-
tices and support this form of
social organization with a divi-
sion of the workplace into spatial
clusters — one for each master
and his apprentices — where
they can meet and work together.

Table 1. Example of one of Alexander’s patterns

www.manaraa.com

 Volume 50, Number 5 TechTrends 33

tional design community would be a
useful resource. Pedagogical patterns,
in addition to providing a description
of common problem-solution pair-
ing, could refer to empirical studies to
support the proposed solution.

Seeing the plan before
you build

In recent years, one of the most
prominent developments in software
engineering is the widespread
adoption of a standard set of notations,
the unified modeling language (UML),
which allows developers to model
problem and solution domains. This
follows the practice in other design
domains such as architecture, which
have standard visual communication
languages. UML evolved from the
fusion of notations from different
development methods (Booch, 1999)
and has been adopted as an industry
standard. It contains several different
diagramming methods for mapping
the features, structure and information
flows of a system.

The benefit of a standard notation
is that it allows a design team to create
and evaluate a detailed model of what
it intends to build. Correcting flaws
in an architectural plan for a building
saves effort and cost over correcting
flaws once the building has been
constructed. In the same way, UML
can save the costs of constructing
software that has a design flaw or does
not meet customer requirements.

Currently, the most commonly
used modeling language in ISD
is concept mapping. A UML-like
modeling language for instructional
design was created at Open University
in the Netherlands and has been
integrated into the Learning Design
Specification of the IMS global
learning consortium (2005), one of
the main bodies involved in learning
technology standards.

Computer-aided software
engineering (CASE)

Automation in education has
tended to focus on development and
delivery tools for computer-based
instruction. There are a number of

commercial tools for development
(authoring tools) and delivery
(learning management systems).
However, although research has been
done on automating analysis and
design (Goodyear, 1997; Spector &
Muraida, 1997), there are relatively
few fully developed and widely used
software tools in this category. Spector
and Muraida (1997) argue the need
for such tools by noting that there is
“a lack of ID expertise, pressures for
increased productivity of designers,
and the need to standardize products
and ensure the effectiveness of
products.” The same can be said for
software design.

Pressman (2000) notes that until
relatively recently, there has been a
similar lack of design tools in software
engineering where practitioners
constructed automated systems for
others but used little automation
themselves. Computer-aided software
engineering (CASE) has matured to
the level that there is now a range of
commercial tools covering the entire
process lifecycle.

CASE tools can be divided into
high and low CASE, with the low
CASE tools supporting programming
and other development activities such
as debugging and the high CASE tools
supporting analysis and design. The
UML modeling approach discussed in
a previous section has been integrated
into a number of high CASE tools.
The tools are often marketed on the
basis that they can generate some of
the required software code from the
design models and thus shortcut from
design to development. IBM’s Rational
Software (2005) is a prominent
example of a CASE tool built around
the use of UML. Figure 1 illustrates an
early version of the Rational Rose Case
tool, in which a UML use case diagram
has been created. In this particular
example, a system whose boundaries
are determined by the square has
three “use cases” (ellipses), which are
the essential functions of the system.
The use cases are made available to
external “actors” (stick figures) on the
system. This kind of diagram would
be used to analyze the requirements
for a system; the use cases would have
more detailed procedural descriptions

“Compared with the
work in automated
ISD, there has been
much more success
in developing
commercially
successful high CASE
tools. The lack of an
established standard
modeling language
(for ISD) may be
part of the reason.”

www.manaraa.com

 34 TechTrends Volume 50, Number 5

attached to them based on scenarios
(stories describing the system’s
use). Other diagrams are created to
illustrate different views of the system,
e.g., how objects would connect
together. Code can be generated from
the most detailed structural view of
the system, which, together with the
diagrams, can ease the work of the
programmer.

Compared with the work in
automated ISD, there has been
much more success in developing
commercially successful high CASE
tools. It is not easy to speculate why,
but the lack of an established standard
modeling language may be part of the
reason. It is certainly true that the
increasing acceptance of UML and its
integration into software design tools
had a positive effect on their popularity.

There is scope for transferring much
of the thinking in current CASE tools
to the construction of tools to assist
in the design of courses and content.
This may be a direction for some of
the many e-learning companies that
are currently focused primarily on
learning management systems and
authoring tools.

Conclusion
This article has identified some

areas of relevant knowledge that can
be adapted and transferred from soft-
ware engineering to instructional de-
sign. Software engineering is a large
and diverse domain, and there are a
number of other areas that could have
been mentioned, such as software us-
ability analysis and testing. There is

“If the barriers of
jargon can be

overcome, it may
become apparent
that many of the
issues in design-

related disciplines
are the same,

and there is great
potential for sharing

knowledge.”

Figure 1. A UML model being constructed in a CASE tool

www.manaraa.com

 Volume 50, Number 5 TechTrends 35

a definite parallel between the two
areas, particularly as technology in-
creasingly infuses learning systems.

Sharing knowledge across dis-
ciplines is often difficult due to the
insular nature of much of academia
and the communication silos through
which knowledge must cross. How-
ever, if the barriers of jargon can be
overcome, it may become apparent
that many of the issues in design-
related disciplines are the same, and
there is great potential for sharing
knowledge.

The development of better process
thinking, design techniques and tools
will provide an impetus toward better
systems in general. I would urge in-
structional designers to look beyond
their own journals and conferences
for reusable “objects” of knowledge
that exist in other domains. I would
also urge software engineers to do as I
have and look at instructional design
for insights into how the human ele-
ment can be better incorporated into
technology-based systems design.

Ian Douglas has a PhD in computer science, an
MA in psychology and an MSc in computing
and cognition. He is a professor with a joint
appointment between the Learning Systems
Institute and the College of Information at
Florida State University. Dr Douglas’s research
interests are in human-computer interaction,
human performance technology, knowledge
management and IT systems in support of sys-
tems design. He has a number of publications
relating to training and technology and has
received three awards for innovations in the
use of educational technology. He is currently
the principal investigator on a research project
investigating software models for the manage-
ment of human performance knowledge in the
military.

References
Abrahamsson, P., Salo, O., Ronkainen, J., &

Warsta, J. (2002). Agile software devel-
opment methods: Review and analysis.
Retrieved January 22, 2006, from http://
www.inf.vtt.fi/pdf/publications/2002/
P478.pdf

Advanced Distributed Learning. (2005). Re-
trieved January 22, 2006, from http://
www.adlnet.org/

Agile Alliance. (2001). The agile manifesto.
Retrieved January 22, 2006, from http://
www.agilemanifesto.org/

Alexander, C. (1979). The timeless way of build-
ing. New York: Oxford University Press.

Beck, K. (2000). Extreme programming ex-
plained: Embrace change. Reading, MA:
Addison Wesley.

Booch, G. (1999). UML in action. Communi-
cations of the ACM, 44(10), 26-28.

Bostok, S. (1998). Courseware engineering:
An overview of the course development
process. Retrieved January 22, 2006,
from http://www.keele.ac.uk/depts/cs/
Stephen_Bostock/docs/atceng.htm

Fowler, M. (2000, December). Put processes
on a diet. Software Development Online.
Retrieved January 22, 2006, from http://
www.sdmagazine.com/documents/
s=737/sdm0012a/

Goodyear, P. (1995). Infrastructure for course-
ware engineering. In R.D. Tennyson & A.
E. Barron (Eds.), Automating instruction-
al design: Computer-based development
and delivery tools (pp. 11-31). Berlin:
Springer-Verlag.

Goodyear, P. (1997). Instructional design en-
vironments: Methods and tools. In S. Di-
jkstra, N.Seel, F. Schott & D. Tennyson,
(Eds.), Instructional design: International
perspectives (Vol. 2) (pp. 83-111). Mah-
wah, NJ: Lawrence Erlbaum.

Gordon, J., & Zemke, R. (2000). The attack on
ISD. Training, 37(4), 42-56.

IBM Rational Software. (2005). New to Ratio-
nal. Retrieved January 22, 2006, from

http://www-128.ibm.com/developer-
works/rational/newto/

IMS global learning consortium. (2005). Re-
trieved January 22, 2006, from http://
www.imsglobal.org/learningdesign/

Nandigam, J. Lakhotia, A. & Cech C., (1999).
Experimental evaluation of agreement
between programmers in applying the
rules of cohesion. Journal of Software
Maintenance: Research and Practice, 11,
35-53.

Open Source Initiative. (2005). Retrieved Jan-
uary 22, 2006, from http://www.open-
source.org/

Paulk, C. V., Weber, C. V., Curtis, B., & Chris-
sis, M. B. (1995). The capability matu-
rity model: Guidelines for improving
the software process. Reading, MA: Ad-
dison-Wesley.

Pedagogical Patterns Project. (2005). Retrieved
January 22, 2006, from http://www.peda-
gogicalpatterns.org/current/right.html

Pressman, R. S. (2000). Software engineering:
A practitioner’s approach. New York: Mc-
Graw-Hill.

Spector, J. M., & Muraida, D. J. (1997). Auto-
mating instructional design. In S. Di-
jkstra, N.Seel, F. Schott & Tennyson, D.
(Eds.), Instructional design: International
perspectives (Vol. 2) (pp. 59-81). Mah-
wah, NJ: Lawrence Erlbaum.

Standish Group International. (1999). CHA-
OS: A recipe for success. Research re-
port. West Yarmouth, Massachusetts.
Retrieved January 22, 2006, from http://
www.standishgroup.com/sample_re-
search/PDFpages/chaos199%9.pdf

Wilson, B., Jonassen, D., & Cole, P. (1993).
Cognitive approaches to instructional de-
sign. In G. M. Piskurich (Ed.), The ASTD
handbook of instructional technology (pp.
21.1-21.22). New York: McGraw-Hill.

Yourdon, E., & Constantine, L. (1979). Struc-
tured design: Fundamentals of a discipline
of computer program and systems design.
Englewood

www.manaraa.com

